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ABSTRACT

2 28|

The stability of the Kalman filter as it is applied to orbit determination,
and the dependence of its behavior on the transition matrix, the initial co-
variance matrix, the types of observations, and the covariance of the noise

in the measurements is explored using a basic simple harmonic motion model

with zero and negative damping. : @ % "y
& /'
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SECTION I

INTRODUCTION

In a series of by now weil-known papers [1-3 ], R. E. Kalman describes
an opilimal [ilter applicable to noisy, time-varying, linear systems. This filter,
which is essentially a minimum variance linear estimator, is particularly suit-
able for those orbit-determination problems in which estimates of state variables,
which are based on noisy measurements and random initial conditions, are de-

sired as rapidly as possible.

The Kalman filter was first applied to an on-board spacc-navigation problem
for a circumlunar mission by NASA at Ames 4,5 7, and shortly thereafter by
MIT 6 7. Republic {7-10 7, NASA at Goddard [11-13 ] and undoubtedly others
have applied it to orbit-determination programs that utilize ground-based tracking

data as well as on-board observational data.

In general, in any search for optimal filters and controls in orbit-determina-
tion and guidance problems, the question remains, even after optimality has been
achieved, whether the resultant filter or control system is stable. An answer in
the negative, of course, would destroy the usefulness of the optimal formulation
because small disturbances would grow without bound in spite of the observations
or control inputs. The question of {inite time stability is also of significance
here, particularly for orbit determination problems where a long time interval

compared to the dynamics-of the models may not be available for observation.

This question of the stability of the Kalman filter in its application to orbit-
determination problems and the dependence of such stability on the transition
matrix, the covariance matrix of initial conditions, the types of observations,
and the covariance of the noise in the measurements does not appear to have been
investigated, in spite of the fact that the convergence of any orbit-determination
scheme is dependent upon it, and as far as the author is aware, no general proof

of the stability or convergence for the filter in this application exists.



Kalman {3 7 has explored the question of stability for a linear system and
has obtained sufficient conditions for asymptotic stability, requiring complete
controllability and complete observability. In the basic orbit determination
problem, however, complete controllability is usually missing and furthermore
the dynamic systems to which the linear filters are being applied are basically

nonlinear.

To zain some insight and experience with the operation of the Kalman
filter as it is applied in the orbit determination problem, it was decided,
before undertaking the investigation of the general problem, to look at some
very basic simple modcls which might in some sense approximate a vehicle
in orbit and yet be of sufficiently low order to be handled easily. We chose to
look at a simple harmonic motion model in one dimension with both zero and
negative damping and attempted to explore its behavior both for asymptotic
stability and finite time stability as functions of various parameters such as
the choice of observations, the time between observations, and the covariance

matrix of initial conditions.

The investigation of this simple linecar model, which was planned to be
a preliminary exercise to the study of more general and nonlinear models was
move intercsting than anticipated. It is expected that the more general and
nonlincar models will be explored in further studies. This report will be

concerned with the results of the linear model investigation.

In general, for notation', we try to use lower case Latin letters for
veclors, upper case Latin and Greex letters as matrices and lower case
Greek, and Latin letters with subscripts, as scalars, except that t and k
are always scalars denoting time. Exceptions are either obvious or noted
in the text. The transpose of vectors and matrices is denoted by the vector
or matrix primed,



SECTION II

FORMULATION OF THE PROBLEM

A, Solution of the Filtering Problem

The general filtering problem is essentially one of finding information
(about a random process) that is based on observed values of another related
random process. The most general solution to this problem is the conditional
probability distributions of the unknown random process. The conditional mean
is that nonlinear function of the observations that minimizes the mean-square
error in the estimate,

For a Gaussian proceés, the conditional probability distribution is com-
pletely determined by its mean and covariance so that, in this case, it suffices
to calculate these quantities for a complete solution. Furthermore, the con-
ditional mean turns out to be a linear function of the observations whereas the

conditional covariances are independent of the observations.

If, in addition, the process is assumed to be Markovian (for exémple, a
lincar dynamical system excited by Gaussian white noise), it suffices to know
the means and the covariances at one instant of time. The conditional means
are computed by putting the observed values through a linear filter whereas the
conditional covariances that are necessary for computing the conditional means

may be found independently.

It is the solution of the filtering and prediction problem of the linear
Gauss-Markovian process that is presented by Kalman. The basic model of

this process (or sequence in the case of discrete intervals of time) is given by

x(k+1) = @(k+1,k) x (k) + T'(k+1,k) u(k) ,

(II-1)
z(k) = M(k) x (k) + v(k), k=0,1,2,...

?



- for discrete time, where x(k) is an n-dimensional state vector; z(k) is a
p-dimensional observation of the state corrupted by noise; ¢, the transition
matrix , T, and M, the mcasurementor obscrvation matrix are given matrix
functiouns of time; and u(k) and v(k) are Gaussian white-noise sequences with
E{u(k) 7=E v(k)1=0, E lu(k)u’(m) | = skm U(k), E Jv(k) v'(m)] =

. Ry, B luk) viimyt = 81 C{k) for all k and m, where ka is the

Kroncciker delta, and for simplicity of notation, we have suppressed the t in the

arguments of our functions and have written k for t,- We assume also, in

(II-1) that
@(k,j) &, m) = &k, m), ok,k) =1,
Tk, j) T(,m) = T'(k, m), and T(k,k) =0 .
| 1. Prediction and Filtering

' A solution to the prediction and filtering problem is the minimum
| variance estimate of x (k+1). This minimum variance estimate is the condition-
al mean of x(k+1), given the observations z(k), z(k-1), z(k-2),...2(0), which is
denoted by X (k+1 |k) and given by [1,3,14]
Rk+1 k) = ak+1,k) X(k [k-1) + K (k) (2(k) - M(k) Rklk-1)1, (T-2)
where the weighting function is defined as

K, (k) = [ (k+1,k) P(k[k-1) M (k)

+T(k+1,k) C(k) ] TM(K) P(k [k-1) M (k) + Rk)] ™ . (I-3)

The error in the estimate is defined as
K (k+1 1K) = x(k+1) - x(k+1 |k) , (II-4)
and the covariance matrix of the error is

P(k+1 |k) =E [ X(k+1 1k) ¥’/(k+1 k)] = & (k+1,k) P(k [k-1) &'(k+1,k)
K, (k) [M(k) Pk |k-1) @ '(k+1,Kk)

+C (k) T'/(k+1,k) 1 + T(k+1,k) U(k) T '(k+1,k) . (II-5)



With the initial estimates of the state and the covariance matrices
+given by Q(O {—1) = E Mx(0)1 =0 and P(0 ]-1) = ETx(0)x(0) 7, one may successive-

ly compute the estimate Q(kﬂ Ik) and the associated covariance matrix P(k+1 k) .

The noise input u becomes zero whean there are no random perturba-
tions associated with the dynamic equations. This implies that C =U =0, and,
in this case, Egs. (II-2), (O-3), and (II-5) reduce to

X+ k) = ¢(k+1,k) R(k k-1) + K, (k) [z(k)- M(k) x(klk-1) 1, (II-6)

K (k) = &(k+1,k) Pl li-1) M (k) [M(i) Pk lk-1) M (k) + R(k)],

(O-7)

P+l k) = "¢ (k+1,k) - K, (k) M(K)] Pk k-1) &'(k+1,k) . (11-8)
2. Tiltering Only
For the filtering-only problem we obtain
A A A
x(k k) = X(k Tk-1) + K(k) Tz(k) - M(k) x(k |k-1)7, (I-9)
K(k) = P(k [k-1) M “(k) "M(k) P(k k-1) M“(k) + R(k)]-l , (I1-10)
Pk k) = T - K(k) M(k)) Pk |k-1) , (O-11)
which are useful only with the updating equations, valid for C =0,

Rk |k-1) = ¢k, k-1) R(k-1]k-1) , (II-12)

Pk lk-1) = &(k,k-1) P(k-1|k-1) & ‘(k,k-1) +T(k, k-1)U(k-1)T "(k, k-1) .

(II-13)



B. .Application to Orbit Defermination

In the usual orbit determination problem, we make discrete noisy
measurements of variables related to the state of a vehicle whose motion is
uniquely determined by its unknown initial state, and we ask, on the basis of

the noisy measurements, for the "best" estimate of the state at any time,
y A y

For application to this orbit determination problem, Eqs. (II-9) to
(II-13) are utilized in somewhat modified form, with u = U = 0. Instead of
Eq. (II-12) in addition, the cquations of motion are integrated from one obser-

vation time to another so that we obtain
A A
x(k |k-1) = f(k;x(k-1]k-1), k-1) . (II~14)

In addition, if we define x(a)(k) as the actual state, the measured observations
z(m)(k) may be defined by

z(m)(k) = g(x(a)(k)) + v(k) , (II-15)

where v(k) is Gaussian white noise, and E[v(k) v'(m)] = 6km R(k). Computed

observations z(c)(k) are given by

2% = ¢ Rk |k-1)) - (11-16)
The estimate of the state x(k |k), Eq. (II-9), is then taken to be

Rac k) = Rk Jk-1) + K(k) 2™y - 28907 (11-17)
Eqs. (II-13) for up-dating the covariance matrix becomes

P(k [k-1) = &(k,k-1) P(k-1 |k-1) & ‘(k,k-1) , (11-18)

while Eqs. (II-10) and (II-11) for the weighting function, and covariance matrix

correction remain the same,

Since the equations of motion for the orbit determination problem are

nonlinear, and the total observations (in which the state may enter nonlinearly)



are used in Eq. (II-17), some explanation of the application of the linear filter

* theory to this problem is in order.

The justification lies in the assumption that deviations and the estimates
of these deviations of the actual trajectory from an assumed known reference
trajectory are small, so that in terms of the deviations, the estimates of the
deviations, and the crrors in the estimates, the cquations are linear. The
integrated equations of motion for both the actual and cstimated trajectories
may thus be considered equivalent to the integration of the known reference
trajectory plus the unknown lifiear perturbations. Thus, if we define x(r)(k)

to be the state of the reference trajectory, we may write
x®ay = xMg + o300,
R k-1) = xPgy + 58k [k-1) | (II-19)
Rk k) = xDy + 58Ky - (I1-20)
Errors in the estimates, also assumed small, are given by
Rk |k-1) = xg) - Rk k1) = 6x(k) - oR(k |k-1) ,
Xkl = x g - Rk = sx(k) - §%(k k) . (I1-21)

If we cxpand the integrated equations of motion for both the actual and estimated

trajectories about the reference trajectory, we obtain
@0y = 1esx® (k-1),k-1) = k) + §x(k)
= t(ex) (k-1), k-1) + Bk, k-1) §x(k-1) , (11-22)
and
R0c [k-1) = £0:R0k-1 [k-1), k-1) = xF(k) + 6R(k [k-1)

= 10xTk-1), k-1) + & (k,k-1) 6X(k-1[k-1) , (11-23)



~ where

(i, k-1) = 20x k-1), k-1)/5 ) .
~ A (kR(k-1k-1), k-1)/a% .

The deviations and the estimates of the deviations thus satisfy the linear

equations
6 (k) = ¢(k,k-1) §x(k-1) ,
A A
5x(k [k-1) = &(k,k-1) 5x(k-1 |k-1) .
If we similarly expand z(m)(k) and z(c)(k), we obtain

2™ - 20 = vk) + M(k) Tk [k-1)
where
M(k) ~ »g(x(k [k=1))/a% .

From Eq. (II-21), this can also be written as

2™y - 280 = s2(k) - M(k) §X(k [k-1)
where

(k) = M(k) §x(k) + v(k‘) .

Thus, using Egs. (II-23) and (II-29), the estimate for the state,
Eq. (II-17) may be written as

Ry = Xy + 58k Ik = xPy + 680k k-1)

+ K(k) T62(k) - M(k) 6% (k lk-1)"
or

sx(k k) = 6%(k [k-1) + K(k) [6z(k) - M(k) 6%(k [k-1)7 .

(I-24)

(II-295)

(II-26)

(I-27)

(II-28)

(I1-29)

(I-30)

(II-31)

(I-32)



From Eqgs. (II-32), (II-30), and (IT-23) leading to (II-26), we conclude
then that although we are integrating nonlinear equations of motion Eq. (II-14)
and dealing with tolal observations in which the state enters nonlinearly, (Egs.
(I1-15) and (II-16), for small deviations and estimates of deviations from some
reference trajectory, we are in fact applying the linear filter theory only to

the deviations which satisfy linear equations.

We should note, however, that in this case, the transition matrix @,
Eq. (11-24), and the observation matrix M, Eq. (II-28), are functions of the
total estimated trajectory state. This is the fundamental difference between
applying the filter to a linear system, and to the deviations of a nonlinear

system.
C. Development of the Error Equations

In investigating the stability of the Kalman filter as applied to orbit de-
termination, we explore the behavior of the error in the estimate (together
with the covariance matrix of the error) rather than the estimate itself. If
Eq. (II-23) is subtracted irom Eq. (II-22), with the errors as defined in

Eq. (I-21), we obtain a linear equation for the up-dating of the errors,

X(klk-1) = @ (k,k-1) X (k-1 |k-1) . (1I-33)

The linear equation for the corrections to the errors as a result of the
observations, from Eqgs. (II-21), (II-27), (II-29), and (II-32) becomes

X(klk) = ¥k [k-1) - K(k) TM(k) Xk lk-1) + v{k). (I1-34)

In summary, then, the equations for the errors and the covariance

matrices of the errors to be investigated for stability may be written as

X(k |k) = Wk, k-1) (k-1 |k-1) - K(k) v(k) , (I-35)

v (k,k-1) = I - K(k) M(k)] ¢ (k,k-1) . (I1-36)



Pk k) = ETX(k k) X “(k [k) 1 = [T - K(k) M(k)] Pk |k-1) , (I-37)

Pk lk-1) = ECX(K|k-1) X "(k |k-1) 1= ¢(k,k-1) P(k-1 |k-1) &’(k,k-1) ,
(II-38)
K(k) = Pk lk-1) M (k) I'M(k) Pk [k-1) M‘(k) + R -1 (11-39)
Equation (II-35) is a linear nonautonomous vector difference equation so
that its stability properties are independent of the input function v(k), and we

may therefore study the stability of the free system given by
Xk k) = Wk,k-1) K(k-1 |k-1) . (11-40)

Equations (II—37') - (II-39) may be combined to give the nonlinear non-

autonomous matrix difference equation

Pek |k) = &(k,k-1) P(k-1[k-1) & ‘(k,k-1) {1
- M’(k) [M(k) &k, k-1) P(k-1k-1) ¢’ (k,k-1)M ’(k) (II-41)

+ R V[(k) &(k,k-1) P(k-1|k-1) & "(k, k- 1)

We note that the stability of the error (Eq. (II-40)) is determined‘by the
behavior of the matrix ¢ which is a function of the covariance matrix but that
the equation for the covariance matrix is independent of the error and so may

be investigated first.

Some fundamental notions of stability and Liapunov's Methoa have been
presented in [157and 7167 . We recall that given the free vector difference
equation x(t.l +1) = h(;\(tk) tk) , that a state \( ) is an equilibrium (or cr1t1cal)
state if x(®) = n(x(€ ),t ) for all t,. We observe from Egs. (II-40) and (I-41)
for the error and covariance matrix, that the origin is an equilibrium state
for both the error, X(k|k) and the covariance matrix P(k |k). Additional

equilibrium points, however, may arise under special conditions.

10



D. Positive~Definiteness of Covariance Matrix

Most of our investigations will be concerned with the behavior of the
covariance matrix P(k Ik) for the particular models we have set up. In general,

however,from the error cquation

Xk k) = ok [k-1) X(k-1]k-1) + K(k) v(k) ,

and the resulting covariance equation,

P(k k) = EX(kjk) X'(k|k)7,
=y P(k-1]k-1) ¢/ + KRK',

we note that if the noisc covariance matrix R and the initial error covariance
matrix P(0'0) are symmetric and positive-definite, then the covariance
matrix P(k Ik) is always symmetric and positive-definite, except, perhaps

in the limit, at the eguilibrium point at the origin where the norm of the matrix
will be zero. (In general, for any positive-definite matrix A, the expression
BAB’ is positive-definite for all non-zero B, and sums of positive-definite

matrices are positive-definite.)

11



SECTION III

SIMPLE HARMONIC MOTION MODEL

Al Dynamic Equations

The dynamic equations for simple harmonic motion gre given by

5<=Ax,

where the two-component vector x and the two by two matrix A are defined

Here, the motion is periodic, in one dimension. With observations assumed

every A units of time, the solution is given by
x(k+1) = & (k+1,k) x(k) , (III-1)

- CoS A sin A _

¢(k+l,k) = & (4) =/

_-sin A cos A’ (I-2a)

A=Y~
where @{A) is the constant transition matrix. Observations,
zi=Mix+vi , 1=1,2,... ,

for such a system may take the forms listed:

12



range: 17 1 01,
range-rate: Mz =10 17,
range and range-rate; M3 =1,

on-~board observation

of angle: M4=— fa 07},
ground-based obser-
vation of angle: M5 =+Ta 07,

2

a=b/0? +x %)

b>0.

The angle observation matrices arise from the following considerations.
For the on-board observation, a landmark b units perpendicular to the line
of motion is observed from the vehicle, and deviations of the angle g = arctan
(b/xl) (so that £/ = M4 8x) are mecasured. Similarly, for the ground-based
observation, a site again b units from the line of motion observes the vehicle,
and mcasures deviations of the angle #= arctan (xl/b) (so that § ¢ = M5 6X).

.

The observation noise vector Vi is white and Gaussian with zero mean

and components and variances defined as follows:

V.=e., R=0.2, i=1,2,4,5.

i 1 i
2
€ o 0
_€1 _ 91 _
vV, = | | R = 2 .
3 |_.€2 ! ’ LO 02 J

B. Error and Variance Equations

The error cquations for simple harmonic motion reduce to those of a
two component statle error vector and a three element two by two symmetric co-
variance matrix. The equations for the covariance matrix are independent of
the error and so may be investigated first. If we define the covariance matrix

at t_ due to measurcments up to t, as

100 (o)
P (k |k) _X”i(k) £ / , (III-2b)

13



and the covariance matrix at tk due to measurements up to tk-l as

£ x(k-1) 7. ¥(k-1)
P (k lk-1) =< ! 1 , - (II-2¢)
- * {1 —
nkel) g H(eD)
and further define the vectors
r 1 s ety ]
i !
= a0l *(le—1) = *{1o—
py(k) ! nd&) i p*k-1) n*(k-1)
*Lc (k) g *(k-1)
. s
i=1,2, ,
we obtain the equations
pi*(k—l) =B pi(k—l) , i=1,2,... (III-3)
where
|— cos2 A sin2 A 51112 A
B= -3 sin2 A cos2 A £sin2 A (OI1-4)
sin2 A -sin 2 A 0082 A
and, for i =1, and 2,
p (k) = B p,(k-1) - F(p *(k-1)) ,
(III-5)
pz(k) =B pg(k_l) - G(pz*(k_l)) ’
where
T, *ke1) 12
- 2 s
F Lp1>k(l\-—1)] = [1/(51*(1{—1) + gy )7 51*“(_“ 771‘(“'1) ,
- Ony e
(III-6)

14



and

p— —

- 2
an *(k—I') :‘l

Glpy*(k-1) 1= (1AL, *k-1) + 0,) ] | mo*(k-1) £, *(k-1)

2, *(k-1) 12

(LI-7)
In terms of the components of pi(k) and pi*(k—l), Eq. (III-5) becomes

£109 = £ *(km1) 11 = £ K(km1) /(6 K1) 400 T

N0 =0 *k-1) (1 - g *(k-D) /(6 FR-D) 40, )T (I-8a)

¢ 1(k) = Cl*(k—l) ['nl*(k—l) 12 / (gl*(k-l) + 0'12) ,-

£, ) = £ 7(5-1) = Iny (k1) 12/ (Cy4k-1) + 0y )

ng(k) = 772*(k‘1) Cl = CZ*(k'l) / (C’ 2*<k-1) + 0'22) 1 (II1-8b)

\ ‘ _ 2
Cok) = £,*(K-1) [1 - oX(k-1) / (£o*(k-1) +0,7) ]
1. Lincar Behavior of Variance Equation

In the neighborhood of the equilibrium at the origin, the terms F
and G in Eq. (III-3) may be expanded in a power series in the variables gi*,
ni* and ?;’i* resulting in beginning terms of second order. In this case, the

reduced equations (or equations of the first approximation)
pl(k) =B pl(k_l) ’ i=1,2, (m-g)

obtainced from Eq. (III-5) by linearization are called equations with significant
behavior of the equilibrium if the matrix B has cither only eigen-values whose
logarithms have negative real parts, or has at least one eigch—value whose
10gafithm has a positive real part. The equations have critical behavior of

the equilibrium if none of.the eigen-values has a logarithm with positive real
parts; however, cigen-values whose logarithms have vanishing real parts do
occur. (We rccall that an eigen-value whose logarithm has negative real part is

one whose absolute value is less than one.)
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The importance of the linear approximation is contained in the
followinz theorem due to Liapunov for differential equations and Perron for

difference equations [177:

Theorem: If the stability behavior of the difference (differential) equation of
the first approximation is significant, then the equilibrium of the complete
difference (differential) equation has the same stability behavior as the equili-
brium of the reduced equation, In critical cases, the stability behavior is not

determined only by the first order terms.

In view of the above theorem, it is thus of interest to investigate
the lincar equations (III-9) and find the eigen-values of the matrix B, By
solving det (B - A1) =0, we find the characteristic equation for the eigen~

values to be

2 o2 (dcosPpa-1)+N(dcosPA-1) - 1=0,

winich has the roots )\1 =1, Xy >\3 =Ccos 2 A%1isin?2 A . The eigen-values
of B are thus all of absolute valuec one which means the behavior of the
linearized cquation in this casc is critical, rather than significant with the

stability determined by the higher order terms.

We note that the matrix B is a function of the elements of the
transition matrix alone. Thus, it is the dynamic system, and not the type of
measurements nor their weighting that determines whether the linearized
cquations for the covariance terms have significant behavior at equilibrium,
thereby determining the stability at the origin of the comblete system. Tor
dynamic systems which are themselves asymptotically stable, or unstable,
onc might then expect significant behavior; for systems which are weakly
stable, critical behavior would be most likely. (In general, for nonlinear
equations of motion, the dynamic system we would be concerned with would
be the variational equations about some reference motion with the transition
matrix as a fundamental matrix solution.)
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2. Reducing to Canonical Form

By computing the cigen-vectors of B, and transforming B into
its diagonal canonical form, we may show that in this case, the origin is the

only equilibrium point [187 .

-

Th2 non-singular matrix of eigen-vectors turns out to be
-1 -1
+

RO

while its inverse may be shown to be

- oo

-
| 2 0 2

i ] a1 2 1
1 =2i 1
L

If we now define the vectors rj(k-l) =771 pj(k-l) , j=1,2,

in terms of the components of rj, we have

’

BN 2. +2p.
{ LJ—l 857t
S B kN S R TR LL B B b Y
!
5. - -2in.
| P C; ~ & - 21m;

where 53. is the complex conjugate of pj - Since pj(k-l) = Trj(k-l) , We

obtain
pj*(k—l) =B Trj(k—l) , j=1,2
- 1y oL Ny
r (k) = Ar (k-1) = T~ F(BT r (k-1))" ,

-1

rz(k) = Arz (k-1) =T ~ G(BT rz(k-l)) ,

where A = (T™! BT) is the diagonal matrix
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1 o o
|
A=, 0 A O :
oo s
IETEEE U
BT = TA= 0 “ix 4
k R

‘,‘ and T™! G become

T F(BTr, (k-1))=- 1 5
| 470, (k=1) -2R(\0 (k1)) +0,

and

T GBTr,(k-1)) = 1 5
4 [05(k-1) +2R(Ap (k1)) +0,° ]

where 2R() Pj(k-l)) = )\Pj(k—l) + x'gj (k-1) .

-

and we have written ) for Aos and X for >‘3. The expressions for T_l F

2 15, (k=1) -2x0, (k-1) |7

- T (k-1) ~2xp (k-1 T

- — 2
-l (ke1) -2%5 (k1) ]

2 1y k1) +23 0, (k-1) |

eo(k1) +2xpy (k1) T

(g (k1) +2 XDy (k-1) T

Solving for the equilibrium points, we find, for j =1,

2
o lz"l-zkp1|
LS TELS 2,
2\.1"1'21{()\01)*’0’1 ]
-2 “‘2
_ ! 1-
pl->\91+

9
4 [y, - 2RO + 0”0 ]
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From the [irst equation, we require ‘31 - 2)\p1 =0 . Butfrom
the second equation, this implics 04 (1-))=0. Since for 0 <A <27,
A# 1, we must have py= 0, and therefore Uy (and of course 51) =0.

*
These same considerations apply to j =2 .

C.  Contracting Muapping and Proof of Stability

The variance equations (IH-3) and (III-5) may be thought of as a mapping -
from time k-1 = tk—l to time K = tk y 1.€.4,

p (k) = H, (pk-1)) , 1=1,2,...

The mapping is contracting if under a suitable norm (where norm

pi(k) = p;(k) '), we have
Tpyk) = I (ey(k-1)) 1< U p(k-1)

In this case, the stability at the origin is asymptotic, for we may choose

the norm itself as a positive-definite Liapunov function V, i.e.
Liapunov function, V (pi(k)) = {'gpi(k) Il', positive-definite,
in which case the change in the Liapunov function ,
AV="p(k) -!pk-]) ",

is negative-definite. By one of Liapunov's theorems [15 - 177, under those

conditions, the equilibrium point at the origin is asymptotically stable.

One way to find the conditions under which the mappings are contracting

is to do it in two stages, i.e., first show that

TR0 < pHk-) !, (II-10)

and then that

, Tpyfk-1) s fpk-1) o, (II-11)
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so that by combining the two inequalitics we obtain
Tpyle) "< pk-1) i=1,2,... . (II-12)

For i=1,2, we can show, using the positive-definiteness of the co- '
variance matrices for non-zcro clements that the components of pi(k) are
less than the components of pi*(k—l)’ i.e. that

A “2 r *{1-

Lgi\‘\) : < ;i (l\-l) ! ’
2 . .2

(k) 27 < In*k-1) 27,

- -2 - ~2
[0 77 < g Mk ]

Il we use for a norm, then

' N2 . . .
pl(k) b= pl(K) ! N Pl(k) ’ (III-lBa)
(o) |2 = p D) N po*(k-1) (I-13b)

where N is a positive definite, diagonal matrix, with

fl 0 o'}
N= 0 °f o0 | f>0, g>0, (I-13c)
o0 & |
so that
y 2 2 2 . 2
Py 7 = (60077 + i T el 017,
and

" 2 -2 - ~2 2
"pHke1) 1 = [ D) 1T Inrk-1) 1T+ g fe K1) 17
we shall have

Ip0) ' < Ip*k-1) ', forallf,g>0 .
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To find what values of f and g in the matrix N will cause
:!pi*(k_l) | s Ipyk-1) (II-11)

Lo hold requires somewhat more cffort, for the identity will not. We prove

(III-11) by computing the norm, Eq. (III-13) of both sides of

p;¥(k-1) = B p;(k-1) , (IMI-3)

1 py*(k-1) = 1B p,(k-1) I

For convenicnce, we define the following quantities:

C =C0S A , S =sin A ,
c2=cos2 A , 82 =8in 2 A ,
2 2 2 . 2

cC =cos A , 5 =sin A

IEq. (1I-3) in component form is thus (omitting the (k-1) arguments)
2 2
* = :
gi c gi+52ni+s Ci ,
X = _ y -
ul (s2/2) g Tc2mn + (s2/2) E; »
2 ‘2
X =g -
Ci"=s §y-s2myte gy
so0 that
, 2 2 2, 2 y 2
py*(k-1) [ = Te” gy +s2n +57E 17 +I[~(s2/2) ¢ +c2n, +(s2/2) L)
.2 2, -
*t8 (S Ei"szni“? ti!
= giz [04 +1s22/4 + gs4] +~niz[522 +fc?2 + gSZZj
2 2
+C12 [s4+fs 2/4 +gc4f1 + g_ini(2c s2 ~fs2c2 -gZSZSZ]

+gic i[20252 —fs22/2 +g28202 '}+-r;ic i|‘2$252 +fc2s2 —g25202 1.
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Ifwenowlet g=1 and f=2, we obtain

| py(k-1) ‘= (¢ +2n +p "= \jpi(k—l)‘;iz , (II-14)

which is what we wanted to prove.

Thus, ineguality (III-12) holds, the total mapping is contracting and the
equilibrium at the origin of the variance vector, pi(k) is asymptotically stable.

We note that this norm, i.e.,
N 2 _ . 2 2 - 2
pyk-1)"" = (£, (k-1) T +2[n(k-1)T + [, (k-DT (II-15a)

\pi*(k-l)'i2 =‘[gi*(k-1)“.2 + Z[ni*(k—l)jz + [Ci*(k-m?‘ , (IT-15b)

-

turns out to be one of the natural norms for a positive-definite matrix, i.e.,
the trace of the matrix (Pi)2 which is equivalent to the sums of the squares
of the cigen-values. Thus, Eq. (III-14) could also have been proven using
Eq. (II-38) and (II-2), for

trace [Pi(k lk-1) '12 =trace {tt (A)[Pi(k-l Ik—l) 12 <I>'(A)‘-‘L R

1

since ¢'(p)=¢  (A) . Upon expansion this results in

e k01?42 k117 + k1) 17
g e 2 e 1+ k) 1

D. Other Mecasurement Matrices
1. Identity Matrix

We have proven the asymptotic stability of the variance equation
assuming simple harmonic motion, and two types of measurement matrices,
M1 =1 07 (implying range measurements) and M2 =70 17 (implying
range rate mcasurcments). One would expect that the situation for M3 equal
to the two by two identity matrix, I, would be no worse. For M3 =1, the

equations affecting the covariance matrix are

22



K(k) = P(k |k-1) TPk |k-1) + R]-I ,

Pklk) = [T - K(k) 1 Pk |k-1) ,
in addition to
Pk [k-1) = & (k,k-1) P(k-1]k-1) ¢ “(k,k-1)

which is independent of M3. With the noise covariance matrix defined by

we obtain, for the elements of the covariance matrix, P(k Ik), the equations
= 2 J’ * e % 2 * 2
£ = (0,°/8) {£*(k-1) [ *k-1) +0,” T - [n*k-1) 1" }
K) = 2 2« II-15
n) =0,° oy n¥k-1)/8 (I-15)

Ck) = (oy7/ A {CHK-1) Te XD + 0, 2= Ty 12}
where

A= TExk-1) + 0,07 EHke1) + 0,70 - Tnke1) 1

For these cquations, we again have ¢*(k-1) >0, ¢ *(k-1) > 0 and
£*(k-1) £ *(k-1) - In*(k-1) ]2 >0, and as a consequence £(k) >0,r(k) >0,
and £ (k) £ (k) - [n(k)]2 >0 . From Eq. (III-15), again it can be seen that

fE007 <lerke 1®
(i) % < fn¥i-) 12,
(20 1% < -1 3,
50 that, using our norm (III-13), we again have

)2

12 < k-1 |

i p(k)

23



Since Eq. (III-14) holds independently of the measurement matrix,
we may again conclude that the variance equation for the identity measurement

matrix is asymptotically stable for all initial conditions.

2. Angle Observations

The angle obscervation measurcinent matrices may be developed
as follows. If b is a positive constant, and xl(t) is the position component
of the state, then § = arctan (b/xl(t)) would represent an on-board observa-
tion of the point at b from the vehicle at xl(t), while ¢ = arctan xl(t)/b
would be the equivalent ground-based observation of xl(t) from the point b.
Differentiating both equations to obtain the angular deviations in terms of the

deviations of the stute, we find

56=DM, 6x,
where
M4=-[a 0], M5=+i'_a 07,

—b/b2+x2 d ''=rpx
a=b/( 1),a,n GX—Llf)Xz]-

Substituting these measurement matrices into the equations for the

covariance matrix we obtain

£ *(k-1) ]
g ¥(k-1) + criz/a2

£i00 = £ k-1 [1 -

£ *(k-1) -

|
Ei* (k-1) + ,Jiz/az-1 .

n300 =0 ¥ (k1) | 1 -

r 72
[ nye-1) |

£ (k1) + 0,2 /a0

g0 = ¢ *(k-1) - i=4,5 .
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Comparing these equations with those, for pi(k) [Eq. III-8a7 ,
for the range-only observation, we note that they are identical except for

the noise covariance term which is now

012/112 = (cil‘)2 (r/0)%
with r = (1)2 +x12) , the obscrvaéion range. Sincer >b, we see that using
angle observation matrices is equivalent to using range measurements with
correspondingly higher,_ and non-constant measurement errors. We note also
that on-board and ground-based angular observations give identical results,

and that both are thus also asymptotically stable for the simple harmonic

model.
E. Benavior of Error Equation

Having determined the behavior of the variance equation for the measure-
meat matrices discussed, one might ask then for the behavior of the linear

error cquation whose behavior is completely determined by the matrix
\I/i(k,k—l) =7I- Ki Mi 1 & (k,k-1)

Fori=1,2, thecse are

\:fl (k,k-1) =
[ 012 cos A 012 sin A
1 1
'\:El>§‘(k_1)_+_o'121 - nl*(k_l) COS % —nl*(k_l) sin AZ
- Egl*(k-l)+01 ]Sm A +E51*(k_1)+0,1 ]COS A
\I’Z(k’k-l) =
nz*(k-l) sin A - ﬂz*(k-l) cos A
1
. 9 _ . N
[CZ*(k_1)+o_22] + rCC?_"'<(R--1)+02 jcos A *ch*(k‘l)*cz I sin A J .
- 022 sin A 0o cos A



We note that for these matrices, and for \I/i in general, that as
k-=, and Pi -0, we have (because Ki - 0), qxi - &, the transition matrix
of the system, with, in the case of simple harmonic motion, eigen-values all
of magnitude one. The stability of the error equations would then be that of
the original dynamical system, and in our case, weakly stable. One would
expect, however, tiat for every finite t, the cigen-values of ¥ would have
magnitudes less than one so that one would again expect asymptotic stability.
The analytic proof of thesd facts and the implications, considering that the
matrix is time-varying have not yet been investigated, although computer

simulations, which we shall discuss appear to demonstrate this.

F. Some Computer Studies
1. Parameter Variation

Equaations for the orbit determination of the simple dynamical model
without damping and with negative damping have been programmed in FORTRAN
4 {or the IBM 7094 computer providing a relatively simple flexible tool for
checking the analysis and analyzing those aspects of the filter behavior which
become too complicated and tedious {or analysis. In these runs, the effects of
varying the time between observations, the covariance of the noise, the obser-
vation matrix, and the initial covariance matrix were observed. In all cases
run without damping, stability at the origin was indicated with, however, the

degree of stability very much a function of the parameter,

Table I lists the conditions for some representative runs made in
which the parameters were varied as indicated. Phase plane plots of the
resulting errors and diagonal elements of the covariance matrix are shown

in Figures 1-16.

Comparing Figures (3-4) with (1-2) illustrates the degrading
cffect of increased noise covariance. Decreased initial covariance in position
(Figures (5-6)) increases the initial excursions in the error but results in.
much smoother variance behavior. Increasing the initial covariance in velocity
(Figures (7-8)) results in a much larger velocity error initially but again re-

sults in smooth variance decreases.
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TABLE I

COMPUTER RUNS OF KALMAN FILTER >
AND SIMPLE HARMONIC MOTION

100 i 100 _
X(0) = | s X (0lo) = | |
=0 -10 -
Firure No. | Run No. M P0]0) o> | 2n(t =k(n/n))
1-2 16 107 |diag (10* 10%) | 2500 32
34 17 10*
|
. 5-6 20 (10% 10%)
| ‘ : 2 3
! 7-8 22 (10° 10
910 24 017 (0% 10%
S o1i-12 | 25 (10° 10%)
C13-14 28 10% 10?
? 10 10°
L 15 - 16 29 8

Comparing Figure (9 - 10) with (1 - 2) illustrates the effect of
measuring range-rate instead of range. TIor the conditions assumed, the
solutions are not as stable, Figure (11 - 12) illustrates this effect even
more dramatically, the errors being almost only weakly-stable. Finally
Figure (13 - 14) and (15 - 16) illustrate the degrading effect of fewer obser-

vations per period.
2. Degree of Stability

To illustrate the degree of stability as a function of various
parameters in a more quantitative way, a number of runs were made varying
the number of observations per period and the initial covariance matrix with

the noise covariance matrix normalized to one.
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Recording the ratios of the magnitudes of final and initial errors,
and final and initial covariance traces as functions of the parameters indicated
in general that the larger the initial covariance matrices and the greater the
number of observations per period, the greater the rate of decay of the errors
and variances, i.e.,the smaller was the ratio between the final and initial
covariance matrix traces and error magnitudes at the end of one period.
Figures 717 - 227 are plots of the ratio of the magnitudes of final and initial
errors, and the ratio of final and initial covariance traces as functions of the
logarithm of the initial velocity error variance with the position error variance
as a parameter for 8, 16, and 48 observations per period. These runs are for
an observation of range, i.e., M1 =1 07. The runs for the velocity obser-

vation were identical.
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SECTION IV

MOTION WITH NEGATIVE DAMPING

A, Dynamic Equations

~

As part of the objective of exploring the stability of the Kalman filter as
a function of the transition matrix and the model used, simple harmonic
motion with negative damping was investigated. The equations for this model
are given by
x =Dx .

where

- X -
x =L ‘ and D= (
Xp -
the solution to these equations is given by
x(k+1) = ¢ (k+1,k) x(k) ,
where the transition matrix, & (k+1,k) is

_ _ACOS A A+ gs8in )\ A sSin \ A
@ (k41,5 = @(8) = (¥ &/n |

1.

-sin )\ A ' ACOS \ A-q Sin ) A
and ‘
2 1
A=t b s A=(-a)? ; -1<a<0

B. Variance Equations

We recall that the influcnce of the transition matrix is felt only in the

so-called up-dating equations relating pi*(k-l) to pi(k—l) y lu€.,

pl*(k—l) =B Pl(k'l)
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where now

-
cos® g+ sin2 p  A\sin29+2¢sin? @ sin® A
—az cos 2 @
B=(e_2°’-A/)_2) -%sinZG—asinZ 6 cos?2 6-(12 %‘SinZG-aSinze
. 2 . .2 2 .
sin” @ -2 sin2@8+2p8in" g cos8 P ASin 29
L _a2 cos 2§
with
2.%
A=(1-a )" 5 -1 <ag<0 ; 6=11

The eigen-values of this matrix are given by

_e-2aé\

K1

_ 2o Axi2g
}.129 U3"e )

whose absolute values are all greater than one. Thus, the behavior at the
origin of the linearized portion of the total nonlinear equation for pi(k-l),
Eq. (III-5), is significant with the stability determined by the eigen-values
of the matrix B. In this case, we conclude that the origin is an unstable

equilibrium point. IHowever, in this case also, we might expect an equilibrium

point for the covariance matrix other than the origin to exist.
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C. Some Computer Results for Negative Damping

Figures 23-34 illustrate the unusual behavior one can expect with a model
of this type. The conditions for these runs are given in Table II. In Figure 23,
we observe what appears to be an unstable error phase plot over one period.
(Time in this figure goes clockwise,) In Figure 24 appear increasing and
apparently unstable diagonal terms of the covariance matrix as a function of
time over one period. If we increase the initial covariance matrix by a
factor of 10, we observe, in Figure 25, that the error curves are stable,
while the variance curves of Figure 26 still are increasing and appear to be
unstable. Finally, with a still larger initial covariance matrix, the error
curves, in Figure 27, remain stable, while now in addition, in Figure 28,

the covariances decrease as indicated.

TABLE II
. MOTION WITH NEGATIVE DAMPING

_ 100 _ 100 .
x(0)=l_ I i’(o|0)=[ ] R=0,°=1
0 -10

M=(0 11, g=-0.2, 2n =232 (observations per period)

Figure No. ~ Run No. P(010)

23 - 24 DIIM 4 diag. (.01 .01) .
25 - 26 DIIM 5 (1 .1)

27 - 28 DIM 6 (1. 1.

29 - 30 DHM 4A (.01 .01)

31 - 32 DHM 5A (.1 .1)

33 - 34 DHM 6A (1. 1.)
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Longer time computer results over several periods show that the errors
finally become stable and that the variances reach a steady state different from
zero. Thus, in Figure 29, the error after increasing for two periods finally
decreases and approac‘hes the origin. At the same time, in Figure 30, the
variances while still increasing initially, eventually approach a steady-state
value of np;)roximaw‘ly 0.15. 1In Figure 31, for tho higher initial covariance
matrix, the errors curves remain stable while the covariances in Figure 32
again increase to a steady-state value. Finally in Figures 33 and 34, stability
of both errors and variances are indicated with the variances in this case

approaching the steady-state value of approximately 0.15 from above.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

As indicated in the Introduction, to gain some insight and experience
with the operation of the Kalman filter as it is applied to the orbit problem,
it was decided, before undertaking the investigation of the general and more
complete problem, to look at some very basic simple models which might in
some scnse approximate a vehicle in orbit and yet be of sufficiently low
order to be handled easily. We chose to look at a simple harmonic motion
model in one dimeansion with both zero and negative damping and have explored
its behavior both for asymptotic stability and finite time stability as functions
of various parameters such as the choice of observatipns, the time between

observations, and the covariance matrix of initial conditions.

Our results may be summarized as follows:

1. If the linecar part of the variance equation has significant behavior,
then the stability of the variance equation at the origin is completely deter-
mined by the transition matrix of the dynamic system, where the time between
observations may, or may xlmot enter, If the behavior is critical, then the

observation matrix and noise covariance matrix play a role.

2. In the case of simple harmonic motion, we have proven asymptotic
stability at the origin of the variance cquation showing the mapping was con-
tracting in two parts, the first affected solely by the transition matrix, and

the second a function of the measurements and noise covariance.

3. Angle observations are equivalent to range observations with

higher noise covariances,

4. The rate of decay of the error, which is of significance in orbit

determination where not more than one period may be observed is very
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much a function of the initial covariance matrix relative to the noise covariance,
and the time between observations., In general, the larger the initial covar-
iance matrix, and the greater the number of observations per period, the
greater is the rate of decay of the errors and varjances, i.e., the smaller

is the ratio between final and initial quantities over one period.

5. For significant behavior of the variance equation at the origin
which is unstable (e.g. our negatively damped model), one might expect other
finite equilibrium points for the variance equation to exist and in fact, they

are necessary for stability to be achicved.

As was also indicated in the Introduction, the investigation of the
linear models studied here can only be considered the first part of the problem.

The logical questions to be asked next are

a. Can anything be said about the stability of more general
linear models applied to orbit determination, and
b. how does the filter behave when the dynamic system is

nonlinear as it is in practical orbit determination problems.?

It is these questions which should be explored next.
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SECTION VIII

GLOSSARY

Latin Symbols

x bt
=
—

[

I
*

HHwH’PPUZZEW

w

constant matrix

positive constant

variance up-dating matrix

covariance matrix of noise u and v
cos A

expectation

vector functions

positive, scalar elements of norm, N
vector function

nonlinear mapping

identity matrix

weighting function

integer representing time values ( = tk)
integer representing time value (= tm)
measurement or observation matrix
positive definite diagonal norm matrix
covariance matrix of errors

variance vectors

covariance matrix of noise, v
observation range

transformed variance vector

sin A

time

matrix of eigen-vectors and inverse
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Gaussian white noise sequence vectors

covariance matrix of noise u

Liapunov function
n-dimensional state vector
estimate of state vector; conditional mean

crrors in estimate of state vectors

Greek Symbols

S e B Q DO Mmoo >

€=

h =

-
Jrr
+*

Y-
™

negative damping factor (-1 < ¢ < 0)
matrix function of time

Kronecker delta

deviation

time between observations (= tk+1 - tk)
determinant appearing in identity measurement equations
noise compohent of v

covariance matrix elements
covariance matrix elements

angle of observation

phase 2zm;g.,_rle in motion with negative damping (= ) A)
(1-a)°

cigen-values

diagonal matrix

covariance matrix elements

component of transformed vector r
complex conjugate of P

noise variance

transition matrix

angle of observation

matrix relating error states

components of vector r
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Superscripts and Subscripts

a actual
C computed
e equilibrium

pertaining to ith measurement matrix
Integer index of time

measured

’1577"“

reference
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